Home
Class 12
MATHS
If A=[[cosalpha,sinalpha],[-sinalpha,cos...

If `A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]]` then prove that `A A^'=I` Hence find `A^(-1)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] , then verify that A^T\ A=I_2 .

If A = [(cosalpha, sinalpha),(-sinalpha,cosalpha)] prove that, A A^(') = I. Hence, find A^(-1) .

If A=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] prove that A.A^(T)=1 Hence find A^(-1)

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

if A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] be such that A+A'=I then alpha

If A=[(cos alpha,sinalpha),(-sinalpha,cosalpha)] , verify that A'A=I_2

IF A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , then show that AA'=A'A

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.