Home
Class 10
MATHS
" (1) "2(x^(2)+(1)/(x^(2)))-3(x-(1)/(x))...

" (1) "2(x^(2)+(1)/(x^(2)))-3(x-(1)/(x))+4=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If x ne 0 and x + (1)/(x) = 2 , then show that: x^(2)+ (1)/(x^(2))= x^(3) + (1)/(x^(3)) = x^(4) + (1)/(x^(4))

If x^(4) - 3x^(2) - 1 = 0 , then the value of (x^(6)-3x^(2)+(3)/(x^(2))-(1)/(x^(6))+1) is :

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))

Let 0

Let the equation x^(5) + x^(3) + x^(2) + 2 = 0 has roots x_(1), x_(2), x_(3), x_(4) and x_(5), then find the value of (x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1).

If tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),x in(0,1), then (x^(4)+(1)/(x^(4))) is equal to

Solve : (i)" "((x-1)\(x-2)(x-3))/((x+1)(x+2)(x+3))" "(ii) " "(x^(4)+x^(2)+1)/(x^(2)+4x-5)lt0

Solve : (i)" "((x-1)\(x-2)(x-3))/((x+1)(x+2)(x+3))" "(ii) " "(x^(4)+x^(2)+1)/(x^(2)+4x-5)lt0

sqrt(2^(x)(4^(x)(0.125)^((1)/(x)))^((1)/(3)))=4.(2^((1)/(3)))