Home
Class 10
MATHS
Let alpha and beta be the zeros of the c...

Let `alpha` and `beta` be the zeros of the cubic polynomial `x^3+ax^2+bx+c` satisfying the relation `alphabeta+1-0`, Prove that `c^2+ac+b+1=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the zeroes of the polynomial ax^2 + bx+ c , find the values of alpha/beta + beta/alpha

If alpha and beta are the zeroes of the polynomial ax^2 + bx+ c , find the values of '1/alpha + 1/beta

If alpha and beta are the zeros of the quadratic polynomial f(x)=ax^(2)+bx+c, then evaluate: alpha^(4)beta^(4)

If alpha and beta be the zeroes of the polynomial ax^(2)+bx+c , then the value of (1)/(alpha)+(1)/(beta) is

If alpha and beta are the zeroes of the polynomial p(x)=ax^2+bx+c then find the following:(v) 1/alpha^3+1/beta^3

If alpha and beta are the zeros of the polynomial ax^2+bx+c . Find the value of alpha^2 + beta^2 + alpha beta

If alpha and beta are the zeroes of the polynomial ax^2 + bx+ c , find the values of alpha^2/beta + beta^2/alpha

If alpha and beta are the zeros of the polynomial ax^2+bx+c . Find the value of alpha^3 + beta^3

20:t If a and B are the zeroes of the quadratie polynomial ax^2+ bx+ c, find the value of 1/alpha+1/beta

If alpha and beta be the zeroes of the polynomial ax^(2)+bx+c , then the value of (1)/(alpha^(2))+(1)/(beta^(2)) is