Home
Class 9
MATHS
" (e) "4a^(2)-(2b-c)^(2)...

" (e) "4a^(2)-(2b-c)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

The area bounded by the curve y=x(1-log_(e)x) and x-axis is (a) (e^(2))/(4) (b) (e^(2))/(2) (c) (e^(2)-e)/(2) (d) (e^(2)-e)/(4)

The area bounded by the curve y=x(1-log_(e)x) and x-axis is a) (e^(2))/(4) b) (e^(2))/(2) c) (e^(2)-e)/(2) d) (e^(2)-e)/(4)

If (a)/(b)=(c)/(d)=(e)/(f)=3 , then (2a^2 + 3c^(2) + 4e^(2))/(2b^(2) + 3d^(2) + 4f^(2))=?

The maximum value of x^(4)e^(-x^(2)) is (A) e^(2)(B)e^(-2)(C)12e^(-2)(D)4e^(-2)

If a,b,c,d,e are positive real numbers such that,a+b+c+d+e=15 and ab^(2)c^(3)d^(4)e^(5)=(120)^(3).50 then the value of a^(2)+b^(2)+c^(2)+d^(2)+e^(2) is

Prove that 2b^(2)c^(2) +2c^(2)a^(2) +2a^(2)b^(2) -a^(4)-b^(4)-c^(4)= (a+b+c) (b+c-a) (c+a-b) (a+b-c)

If a,b,c,d,e are + ve real numbers such that a+b+c+d+e=8 and a^(2)+b^(2)+c^(2)+d^(2)+e^(2)=16 ,then the range of 'e' is

Factorise : a^(4)(b^(2)-c^(2))+b^(4)(c^(2)-a^(2))+c^(4)(a^(2)-b^(2))