Home
Class 11
MATHS
sin^(2)(n+1)A-sin^(2)n=sin(2n+1)^(A)=...

sin^(2)(n+1)A-sin^(2)n=sin(2n+1)^(A)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)(n+1)A-sin^(2)nA=sin(2n+1)As in A

Prove that sin^2(n+1)A-sin^2nA=sin(2n+1)AsinA

Prove that: sin^2(n+1)A-sin^2n A="sin"(2n+1)Asin A

sin(2n+1)A*sin A=sin^(2)(n+1)A-sin^(2)(nA)

" If "sin^(2)1^(0)*sin^(2)3^(0)*sin^(2)5^(0)......sin^(2)89^(0)=m^(n)." Then "|m-n|=

sin^(2)n theta-sin^(2)(n-1)theta=sin^(2)theta where n is constant and n!=0,1

(sin (n + 1) A + 2sin n + sin (n-1) A) / (cos (n-1) A-cos (n + 1) A) = (cot A) / (2)

(sin (n +1) A +2 sin n A + sin ( n -1) A )/( cos (n +1) A - cos ( n -1) A ) =

Lt_(ntooo)(1)/(n){sin^(2)""(pi)/(2n)+sin^(2)""(2pi)/(2n)+..........+sin^(2)""(npi)/(2n)}

If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2) and n_(1),n_(2),n_(3),n_(4) in N value of |(x^(n1),y^(n2)),(z^(n)3,w^(n4))| cannot be equal to