Home
Class 12
MATHS
7int(0)^(1)(x^(4)(1-x)^(4)dx)/(1+x^(2))+...

7int_(0)^(1)(x^(4)(1-x)^(4)dx)/(1+x^(2))+pi)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

7(int_(0)^(1)(x^(4)(1-x)^(4)dx)/(1+x^(2))+pi) is equal to

7(int_0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

7(int_0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

int(x^(4)-1)/(x^(2)(x^(4)+x^(2)+1)^(1/2))dx" is equal to "

The value of int_(0)^(1)(x^(4)(1-x)^(4))/(1+x^(2))dx is/are (a) (22)/(7)-pi( b) (2)/(105)( c) 0 (d) (71)/(15)-(3 pi)/(2)

int_(1)^(2)((dx)/(x(x^(4)+1))) is equal to

int_(1)^(2)(1)/(x^(2)-4x+7)dx=

int_(0)^(1)(xe^(x)+sin(pi(x)/(4)))dx

int_(0)^(1)(x^(7))/(sqrt(1-x^(4)))dx is equal to

int x^(-7)(1+x^(4))^(-1/2)dx" is equal to "