Home
Class 9
MATHS
" 1."9x^(2)-16y^(2)...

" 1."9x^(2)-16y^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Column" A ,, "Column" B), ((3x^(2) - 5)- (2x^(2) - 5 + y^(2)) ,, (a) x^(2) + xy + y^(2)) , (9x^(2) - 16y^(2) ,, (b) 2) , ((x^(3) - y^(3))/(x-y) ,, (c) (9x + 16y) (9x - 16y)) , ("The degree of " (x + 2) (x+3) ,, (d) x^(2) - y^(2)) , (,, (e) 1) , (,, (f) (3x + 4y) (3x - 4y)):}

If e_(1) and e_(2) be the eccentricities of the hyperbolas 9x^(2) - 16y^(2) = 576 and 9x^(2) - 16y^(2) = 144 respectively, then -

A common tangent to 9x^(2) - 16y^(2) = 144 and x^(2) + y^(2) = 9 is

A common tangent to 9x^(2)-16y^(2)=144 and x^(2)+y^(2)=9, is

If e_(1) is the eccentricity of the ellipse (x^(2))/(25)+(y^(2))/9=1 and if e_(2) is the eccentricity of the hyperbola 9x^(2)-16y^(2)=144 , then e_(1)e_(2) is. . . . .

Simplify (x+4)/(3x+4y) xx (9x^(2) - 16y^(2))/(2x^(2) +3x-20)

If e_(1), e_(2) are respectively the eccentricities of the curves 9 x^(2) - 16y^(2) - 144 = 0 and 9x^(2) - 16y^(2) + 144 = 0 then (e_(1)^(2)e_(2)^(2))/(e_(1)^(2)+e_(2)^(2)) =

The equation of the axes of the hyperbola 9x^(2) -16y^(2) +72x -32y -16=0 are