Home
Class 12
MATHS
If I=[[1,0],[0,1]] and E=[[0,1],[0,0]] p...

If `I=[[1,0],[0,1]]` and `E=[[0,1],[0,0]]` prove that `(2I+3E)^3=8I+36E`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I=[[1,0],[0,1]] , E=[[0,1],[0,0]] then (aI+bE)^(3)=

If I = [(1,0),(0,1)] and E = [(0,1),(0,0)] , prove that (a I + bE)^3 = a^3 I + 3a^2 b E .

If I = [(1,0),(0,1)] and E = [(0,1),(0,0)] then show that (aI + bE)^(3) = a^(3)I+3a^(2)bE where I is identify matrix of order 2.

If A= [[5,2],[-1,2]] and I= [[1,0],[0,1]] show that (A-3I) (A-4I)=0

If A= [[6,2],[-1,3]] and I= [[1,0],[0,1]] show that (A-4I) (A-5I)=0

If A = [(4,2),(-1,1)] and I = [(1,0),( 0,1)] prove that (A - 2I) (A - 3I) = 0

If A=[[2,0,-1],[5,1,0],[0,1,3]] , prove that : A^-1=A^2-6A+11I

If A=[[1/3,2],[0,2x-3]] , B=[[3,6],[0,-1]] and AB=I ,then x=

If A=[{:(0,1),(0,0):}]andI=[{:(1,0),(0,1):}] then prove that (aI+bA)^(3)=a^(3)I+3a^(2)bA .