Home
Class 12
MATHS
tan^(-1)sqrt(x^(2)+x)+sin^(-1)|x^(2)+x+1...

tan^(-1)sqrt(x^(2)+x)+sin^(-1)|x^(2)+x+1=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation: tan^(-1)sqrt(x^(2)+x)+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

Solve the equation tan^(-1)sqrt(x^(2)+x+sin^(-1))sqrt(x^(2)+x+1)=(pi)/(2) .

Solve the equation: tan^(-1)sqrt(x^2+x)+sin^(-1)sqrt(x^2+x+1)=pi/2

Find the real solutions of the eqution tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2) is

The number of real roots of the equation tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(4) is :

Solve: tan^(-1)sqrt(x(x+1) + sin^(-1)sqrt(1+x+x^2) = pi/2