Home
Class 12
MATHS
F(x)=int(-(e^(t))/(t))^(x)dtquad x geqsl...

F(x)=int_(-(e^(t))/(t))^(x)dtquad x geqslant0" then "int_(1)^(x)(e^(t))/(t+a)dt

Promotional Banner

Similar Questions

Explore conceptually related problems

Let function F be defined as f(x)=int_(1)^(x)(e^(t))/(t)dtx>0 then the vaiue of the integral int_(1)^(1)(e^(t))/(t+a)dt where a>0 is

If int_(0)^(1)(e^(t))/(1+t)dt=a, then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a

If int_(0)^(1)(e^(t))/(1+t)dt=a then int_(0)^(1)(e^(t))/((1+t)^(2))dt is equal to

If int_(0)^(1)(e^(t))/(1+t)dt=a then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a .

If k=int_(0)^(1) (e^(t))/(1+t)dt , then int_(0)^(1) e^(t)log_(e )(1+t)dt is equal to

If A = int_(0)^(1) (e^(t))/(1+ t)dt then int_(0)^(1) e^(t) ln (1 + t) dt=

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=