Home
Class 12
MATHS
s=tan^(-1)((sqrt(1+x^2)-1)/x) and T=tan^...

`s=tan^(-1)((sqrt(1+x^2)-1)/x)` and `T=tan^-1x` then `(ds)/(dT)`

Promotional Banner

Similar Questions

Explore conceptually related problems

s=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and T=tan^(-1)x then (ds)/(dT)

tan^(-1)(x+sqrt(1+x^(2)))=

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

tan[(sqrt(1+x^(2))-1)/x] =

Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x .

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t tan^(-1)x , where x ne 0

Differentiate tan^-1((sqrt(1+x^2)-1)/x) w.r.t tan^-1(x/sqrt(1-x^2))

Prove that derivative of tan^(-1)((sqrt(1 + x^2) - 1)/(x)) w.r.t. tan^(-1) x is independent of x.

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x))w*r.t tan^(-1)x, wherex !=0