Home
Class 11
MATHS
int(0)^(1)(log x)/(sqrt(1-x^(2)))*dx...

int_(0)^(1)(log x)/(sqrt(1-x^(2)))*dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(1)(ln x)/(sqrt(1-x^(2)))dx

int_(0)^(1)(x^(2)ln x)/(sqrt(1-x^(2)))dx

int_(0)^(1)(log(1+x))/(1+x^(2))dx

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

int_(-1)^(1) log (x+sqrt(x^(2)+1))dx =

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

The value of int_(-1)^(1) ((logx+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x sqrt(1+x^(2))))/(x+log(x+logsqrt(1+x^(2))))f(-x)dx ,

int_(0)^(1)log(sqrt(1-x)+sqrt(1+x))dx equals: