Home
Class 12
MATHS
If A+B+C=pi, prove that : (cosA)/(sinBsi...

If `A+B+C=pi`, prove that : `(cosA)/(sinBsinC) + (cosB)/(sinC sinA) + (cosC)/(sinA sinB) =2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : (cosA)/(sinb sinC) + (cosB)/(sinC sin) + (cosC)/(sinA sinB) =2 .

If A+B+C=pi , prove that : (cosA)/(sinb sinC) + (cosB)/(sinC sin) + (cosC)/(sinA sinB) =2 .

If A+B+C=pi prove that (cosA)/(sinBsinC)+(cosB)/(sinCsinA)+(cosC)/(sinAsinB)=2 .

If A + B + C= pi , prove that cosA/(sinBsinC)+cosB/(sinCsinA)+cosC/(sinAsinB)=2

If A+B+C=pi , then (cosA)/(sinBsinC)+(cosB)/(sinCsinA)+(cosC)/(sinAsinB)=?

if A+B+C=pi then cosA/(sinBsinC)+cosB/(sinCsinA)+cosC/(sinAsinB)=

If A+B+C=pi then cosA/(sinBsinC)+cosB/(sinCsinA)+cosC/(sinAsinB)=

Prove that (sin(B-C))/(sinB.sinC) + (sin(C-A))/(sinCsinA) + (sin(A-B))/(sinA.sinB) = 0

If A+B+C=pi , prove that : cosA sinB sinC +cosB sinC sinA+cosC sinA sinB=1+cosA cosB cosC .

If A+B+C=pi , prove that : cosA sinB sinC +cosB sinC sinA+cosC sinA sinB=1+cosA cosB cosC .