Home
Class 12
MATHS
The numerical value of 9/(csc^2theta)+4c...

The numerical value of `9/(csc^2theta)+4cos^2theta+5/(1+tan^2theta)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The numerical value of 9/(1+cot^2theta)+4cos^2theta+5/(1+tan^2theta)

Find numerical value of (9)/("cosec"^(2)theta)+4cos^(2)theta+(5)/(1+tan^(2)theta) .

If theta =(11pi)/4 , find the numerical value of sin^2 theta - cos^2 theta + 2 tan theta -sec^2 theta

The value of 9cot^2theta-9 cosec^2 theta is ……

If "cosec" theta = sqrt5 , find the value of : 2+1/(sin^2theta)-(cos^2theta)/(sin^2theta)

Find the value of (cosec^(2) theta - 1) tan^(2) theta .

The value of sin^(2)theta cos^(2)theta(sec^(2)theta+cosec^(2)theta)-1 is

The least value of 4 sec^(2) theta + 9 " cosec"^(2) theta is