Home
Class 12
MATHS
I fy=x/(sqrt(1+x^2)), prove that x^3(dy...

`I fy=x/(sqrt(1+x^2))`, prove that `x^3(dy)/(dx)=y^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(x)/(sqrt(1+x^(2))) , prove that, x^(3)(dy)/(dx)=y^(3) .

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If xy=a[y+sqrt(y^(2)-x^(2))] , prove that, x^(3)(dy)/(dx)=y^(2)(y+sqrt(y^(2)-x^(2)))

If y = sqrt(x) + (1)/(sqrt(x)) prove that 2x(dy)/(dx) + y = 2sqrt(x)

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=sqrt((1-x)/(1+x)), prove that (1-x^(2))(dy)/(dx)+y=0

If y=sqrt((1-x)/(1+x)) prove that (1-x^2)(dy)/(dx)+y=0

If y=sqrt((1-x)/(1+x)), prove that (1-x^2)dy/(dx)+y=0

If y=sqrt(1+sqrt(1+x^(4))), prove that y(y^(2)-1)(dy)/(dx)=x^(3)