Home
Class 12
MATHS
Differentiate w.r.t. x the function cot^...

Differentiate w.r.t. x the function `cot^(-1)""((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))),0 < x < pi/2`

Text Solution

Verified by Experts

`y=cot^-1[(sqrt(1+sinx)+sqrt(1-sinx))/((sqrt(1+sinx))-sqrt(1-sinx))xx[(sqrt(1+sinx)+sqrt(1-sinx))/((sqrt(1+sinx))+sqrt(1-sinx))]`
`y=cot^-1[(sqrt(1+sinx)+sqrt(1-sinx))^2/((sqrt(1+sinx)-sqrt(1-sinx))(sqrt(1+sinx)+sqrt(1-sinx)))]`
`y=cot^-1[((sqrt(1+sinx))^2+(sqrt(1-sinx))^2+2(sqrt(1+sinx))(sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx))(sqrt(1+sinx)+sqrt(1-sinx)))]`
`y=cot^-1[((1+sinx)+(1-sinx)+2(sqrt(1+sinx))(sqrt(1-sinx)))/(1+sinx-1+sinx)]`
`y=cot^-1[((1+sinx)+(1-sinx)+2sqrt((1+sinx)(1-sinx)))/(1+sinx-1+sinx)]`
`y=cot^-1[((1+sinx)+(1-sinx)+2sqrt((1^2-sin^2x)))/(1+sinx-1+sinx)]`
`y=cot^-1[(2+2sqrt((1^2-sin^2x)))/(2sinx)]`
`y=cot^-1[2((1+sqrt(cos^2x)))/(2sinx)]`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate w.r.t. x the function in cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))],0ltxltpi/2

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

d/dx[sqrt((1+sinx)/(1-sinx))]

Differentiate the following function w.r.t x: tan ^(-1)((sqrt(1+x)-sqrt(1-x))/((sqrt(1+x)+sqrt(1-x)))

Differentiate the following w.r.t. x : tan^(-1)sqrt((1+sinx)/(1-sinx))

Differentiate the function w.r.t x : root(3)(sinx)

Differentiate the function w.r.t x : cos^-1 (e^sqrt(tanx))

Differentiate w.r.t to 'x', (sinx+cosx)^(2)

Differentiate w.r.t. x: (i)tan^(-1){sqrt((1+cosx)/(1-cosx))}" "(ii)tan^(-1){sqrt((1+sinx)/(1-sinx))}

Differentiate the following w.r.t. x : cot^(-1)(sqrt(1+x^(2))-x) .