Home
Class 11
MATHS
Show that sum(r=1)^9sin^2((rpi)/18)=5...

Show that `sum_(r=1)^9sin^2((rpi)/18)=5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=1)^(10) = sin^(2) rpi/18 =5 .

sum_(r=1)^9 tan^-1(1/(2r^2)) =

Find the value of sum_(r=1)^(n-1)"sin"^(2)(rpi)/(n)

If n be integer gt1, then prove that sum_(r=1)^(n-1) cos (2rpi)/n=-1

If n be integer gt1, then prove that sum_(r=1)^(n-1) cos (2rpi)/n=-1

The value of sum_(r=1)^(8)(sin((2rpi)/9)+icos((2rpi)/9)) , is

If sum_(r=15)^29(cos(rpi/2+theta)=S_1 and sum_(r=15)^29(sin(rpi/2+theta)=S_2 , then S_1/S_2 equals

Evaluate sum_(r=1)^(n-1) cos^(2) ((rpi)/(n)) .

Evaluate sum_(r=1)^(n-1) cos^(2) ((rpi)/(n)) .