Home
Class 12
MATHS
" 15.The limit "lim(n rarr oo)prod(r=3)^...

" 15.The limit "lim_(n rarr oo)prod_(r=3)^(n)(r^(3)-8)/(r^(3)+8)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)sum_(r=2n+1)^(3n)(n)/(r^(2)-n^(2)) is equal to

The value of lim_(n rarr oo)prod_(r=0)^(n)(1+(1)/(2^(2^(r)))) is

lim_(nrarr0) sum_(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

lim_(nrarr0) sum_(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

lim_(n to oo) sum_(r=1)^(n) ((r^(3))/(r^(4) + n^(4))) equals to-

[lim_(f rarr oo)sum_(r=1)^(n)(2r-1)/(2^(r))" is equal to "],[[(A),1],[(C),3]]

lim_(n rarr oo)3^(1/n) equals

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(n+r) =