Home
Class 12
MATHS
" 3."tan^(-1)((2a^(x))/(1-a^(2x))),a>1,-...

" 3."tan^(-1)((2a^(x))/(1-a^(2x))),a>1,-oo

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((2a^x)/(1-a^(2x))), a >1, -oo

If x in (1,oo) then tan^(-1)((2x)/(1-x^(2))) equals

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

Differentiate tan^(-1){(2^(x+1))/(1-4^x)} , -oo < x < 0 with respect to x

Prove that tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1

Differentiate tan^(-1)((2x)/(1-x^(2))) with respect to sin^(-1)((2x)/(1+x^(2))), if x in(1,oo)

Differentiate tan^(-1)((2x)/(1-x^(2))) with respect to sin^(-1)((2x)/(1+x^(2))), if x in(-oo,-1)

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/(sqrt(3))