Home
Class 12
MATHS
" Let "f(x)={[x^(2)ln|x|,x!=0],[0,,x=0]...

" Let "f(x)={[x^(2)ln|x|,x!=0],[0,,x=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

Conisder the function f(x)={{:(x^(2)ln|x|,xne0),(0,x=0):}. "What is" f'(0) equal to?

Let f(x)={x^2|(cos)pi/x|, x!=0 and 0,x=0,x in RR, then f is

Let f(x)={[((e^(3x)-1))/(x),,x!=0],[3,,x=0]} then 2f'(0) is

Discuss the differentiability of f(x)= {( x sin(ln x^2),x!=0),( 0,x=0):} at x=0

Discuss the differentiability of f(x)= {( x sin(ln x^2),x!=0),( 0,x=0):} at x=0

Discuss the differentiability of f(x)= {( x sin(ln x^2),x!=0),( 0,x=0):} at x=0

Let f(x)={x^(2)|(cos)(pi)/(x)|,x!=0 and 0,x=0,x in R then f is

Let f (x)= [{:(x ^(2alpha+1)ln x ,,, x gt0),(0 ,,, x =0):} If f (x) satisfies rolle's theorem in interval [0,1], then alpha can be:

Let f(x)=tan^(-1)x-(ln|x|)/(2),x!=0. Then f (x) is increasing in