Home
Class 12
MATHS
" 4.If "S=i+2i^(2)+3i^(3)+...." up to "2...

" 4.If "S=i+2i^(2)+3i^(3)+...." up to "200" term,then "S" equals "200" i "

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series i+2i^(2)+3i^(3)+... up to 200 terms equals

1+i+i^(2)+i^(3) is equal to

1+i+i^(2)+i^(3) is equal to

If i^(2)=-1 then i+i^(2)+i^(3)+…..... . upto 1000 terms is equal to

If i^(2) = -1 , then i^(1) + i^(2) + i^(3) + ….. + up to 1000 terms is equal to

The sequences S=i+2i^(2)+3i^(3)+...... upto 100 terms simplifies to where i=sqrt(-1)

Find the sum ( i + i^(2) + i^(3) + i^(4) +..... up to 400 terms).

if i^2 =-1, then the sum i+ i^2 + i^3 +......... to 1000 terms is equal to

If i^(2)=1, then the sum i+i^(2)+i^(3)+ upto 1000 terms is equal to 1 b.-1 c.i d.0

If i^(2) =-1, then the sum of i+i^(2) +i^(3)+… to 1000 terms is equal to