Home
Class 12
MATHS
For any triangleABC, the value of determ...

For any `triangleABC`, the value of determinant `|[sin^2A,cotA,1],[sin^2B,cotB,1],[sin^2C,cotC,1]|` is:

Text Solution

Verified by Experts

`Delta = |[sin^2A,cotA,1],[sin^2B,cotB,1],[sin^2C,cotC,1]|`
`=>Delta = [sin^2A(cotB-cotC) -sin^2B(cotA - cotC)+ sin^2C( cotA - cotB)]`
Converting, `cot` into `cos/sin` form, we get,
`=>Delta = [sin^2A(sin(C-B)/(sinB*SinC)) +sin^2B(sin(A-C)/(sinC*SinA))+ sin^2C( sin(B-A)/(sinB*SinA))]`
`=>Delta = [(sin^3A(sin(C-B))+sin^3B(sin(A-C))+ sin^3C( sin(B-A)))/(sinAsinBsinC)]`
Now, `sin^3A = sinAsin^2A = sin(pi-(B+C))sin^2A = sin(B+C)sin^2A)`
`sin^3B = sinBsin^2B = sin(pi-(A+C))sin^2B = sin(A+C)sin^2B)`
`sin^3C = sinCsin^2C = sin(pi-(B+A))sin^2C = sin(B+A)sin^2C)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C =pi , then the value of determinant |{:(sin^2A,cotA,1),(sin^2B,cotB,1),(sin^2C,cotC,1):}| is equal to

For any "Delta"A B C the value of determinant |sin^2\ \ A cot A1sin^2B cot B1sin^2\ \ C cot C1| is equal to- s in A s in B s in C b. 1 c. 0 d. s in A+s in B+s in C

For any "Delta"A B C the value of determinant |sin^2\ \ A cot A1sin^2B cot B1sin^2\ \ C cot C1| is equal to- s in A s in B s in C b. 1 c. 0 d. s in A+s in B+s in C

If A+B+C=pi , then the value of determinant |{:(sin^(2)A, cotA,1),(sin^(2)B,cotB,1),(sin^(2)C,cot C,1):}| is equal to

If A+B+C = pi , prove that [[sin^2A,cotA,1],[sin^2B,cotB,1],[sin^2C,cotC,1]] =0

If A+B+C=pi then |(sin^(2)A,cotA,1),(sin^(2)B,cotB,1),(sin^(2)C,cotC,1)|=

If A+B+C= pi and Delta = |{:(sin^2A,cotA,1),(sin^2B,cotB,1),(sin^2C,cotC,1):}| , find Delta +5 .

If f(theta)=|[sin^2A,cot A,1],[sin^2B,cotB,1],[sin^2C,cotC,1]| , then (a) t a n A+t a n B+t a n C (b) cotAcotBcotC (c) sin^2A+sin^2B+sin^2C (d) 0