Home
Class 12
MATHS
Prove the following: cos^(-1)(4x^(3)-3...

Prove the following:
`cos^(-1)(4x^(3)-3x)=3cos^(-1)x,x epsilon [1/2,1]`

Text Solution

Verified by Experts

The correct Answer is:
`=3cos^(-1)x=RHS`
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise Find the values of each of the following:|8 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise Write the following in the simplest form|4 Videos
  • INTEGRALS

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|21 Videos
  • LINEAR PROGRAMMING

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|5 Videos

Similar Questions

Explore conceptually related problems

Prove the following: sin^(-1)(3x-4x^(3))=3sin^(-1)x, x epsilon[-1/2,1/2]

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

Prove the following: 2tan^(-1)x=cos^(-1)((1-x^(2))/(1+x^(2))),xge0

Prove that 3cos^(-1)x=cos^(-1)(4x^(3)-3x)" "x in [1/2,1]

Prove That : tan^(-1)sqrt(x)=1/2"cos"^(-1)(1-x)/(1+x),x epsilon[0,1]

Differentiate w.r.t.x, the following functions : e^(sec^(2)x)+3 cos^(-1)x .

Prove the following int_(1)^(3)(dx)/(x^(2)(x+1))=2/3+log2/3

Prove that sin^(-1) x+cos^(-1) x=pi/2, x in [-1,1]

Prove that sin ^(-1) x + cos^(-1) x=pi/2 , x in [-1,1]