Home
Class 12
MATHS
Prove the following: 2tan^(-1)x=sin^(-...

Prove the following:
`2tan^(-1)x=sin^(-1)((2x)/(1+x^(2))),+x+le1`

Text Solution

Verified by Experts

The correct Answer is:
`=2tan^(-1)x=LHS`
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise Find the values of each of the following:|8 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise Write the following in the simplest form|4 Videos
  • INTEGRALS

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|21 Videos
  • LINEAR PROGRAMMING

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|5 Videos

Similar Questions

Explore conceptually related problems

Prove the following: 2tan^(-1)x=tan^(-1)((2x)/(1-x^(2))),-1ltxlt1

Prove the following: 2tan^(-1)x=cos^(-1)((1-x^(2))/(1+x^(2))),xge0

If x ge 1 then 2 tan ^(-1) x+sin ^(-1)((2 x)/(1+x^(2)))=

Prove the following: sin^(-1)(3x-4x^(3))=3sin^(-1)x, x epsilon[-1/2,1/2]

Writeh the set of values of x for which 2tan^(-1)x="sin"^(-1)(2x)/(1+x^(2)) holds.

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

d/dx [tan^(-1)x + sin^(-1) (x/(sqrt(1+x^(2))))] =

Prove that tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))=tan^(-1)((3x-x^(3))/(1-3x^(2)))|x|lt1/(sqrt(3))

(x)/(x^(2)-5x+9)le1.