Home
Class 12
MATHS
Prove the following: 2tan^(-1)x=tan^(-...

Prove the following:
`2tan^(-1)x=tan^(-1)((2x)/(1-x^(2))),-1ltxlt1`

Text Solution

Verified by Experts

The correct Answer is:
`=2ta^(-1)x=LHS`
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise Find the values of each of the following:|8 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise Write the following in the simplest form|4 Videos
  • INTEGRALS

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|21 Videos
  • LINEAR PROGRAMMING

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|5 Videos

Similar Questions

Explore conceptually related problems

Prove the following: 2tan^(-1)x=sin^(-1)((2x)/(1+x^(2))),+x+le1

Prove the following: 2tan^(-1)x=cos^(-1)((1-x^(2))/(1+x^(2))),xge0

Prove the following: "tan"^(-1)1/2+"tan"^(-1)2/11="tan"^(-1)3/4

Prove that tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))=tan^(-1)((3x-x^(3))/(1-3x^(2)))|x|lt1/(sqrt(3))

If x ge 1 then 2 tan ^(-1) x+sin ^(-1)((2 x)/(1+x^(2)))=

Prove the following: "tan"^(-1)2/11+"tan"^(-1)7/24="tan"^(-1)1/2

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)[(3x=x^(3))/(1-3x^(2))],|x|lt1/(sqrt(3))

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

Write the set of values of x for which 2 tan^(-1)x="tan"^(-1)(2x)/(1-x^(2)) holds.