Home
Class 12
MATHS
Prove that tan^(-1)x+tan^(-1)y=tan^(-1)(...

Prove that `tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy))` when `xylt1`

Text Solution

Verified by Experts

The correct Answer is:
`((x+y)/(1-xy))`
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise Find the values of each of the following:|8 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise Write the following in the simplest form|4 Videos
  • INTEGRALS

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|21 Videos
  • LINEAR PROGRAMMING

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|5 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3 =pi

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)

tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9)

Prove that 2"tan"^(-1)1/2+"tan"^(-1)1/7="tan"^(-1)31/17

If tan^(-1)3+tan^(-1)x=tan^(-1)8 , then x=

If tan ^(-1) x-tan ^(-1) y=-(pi)/(4) then

Prove that tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))=tan^(-1)((3x-x^(3))/(1-3x^(2)))|x|lt1/(sqrt(3))