Home
Class 12
MATHS
"cos"^(-1)4/5+"cos"^(-1)12/13="cos"^(-1)...

`"cos"^(-1)4/5+"cos"^(-1)12/13="cos"^(-1)33/65`

Text Solution

Verified by Experts

The correct Answer is:
`=cos^(-1)(33/65)`
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise Find the values of each of the following:|8 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise Write the following in the simplest form|4 Videos
  • INTEGRALS

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|21 Videos
  • LINEAR PROGRAMMING

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|5 Videos

Similar Questions

Explore conceptually related problems

Prove that "cos"^(-1)12/13+"sin"^(-1)3/5="sin"^(-1)56/65

Prove That : "tan"^(-1)63/16="sin"^(-1)5/13+"cos"^(-1)3/5

cos[2"sin"^(-1)3/4+"cos"^(-1)3/4]=

ShoW that "sin"^(-1)12/13+"cos"^(-1)4/5+"tan"^(-1)63/16=pi

Show that "sin"^(-1)12/13+"cos"^(-1)4/5+"tan"^(-1)63/16=pi

cos^(-1)("cos"(2pi)/3)

cos^(-1)(12/13)+sin^(-1)(3/5)="sin"^(-1)56/65

cot^(-1)(21) +cot^(-1)(13)+co^(-1)(8)=

sin ^(-1) (3)/(5)+cos ^(-1) (12)/(13)=

cos[2 sin^(-1) 3/4 + cos^(-1)3/4]