Home
Class 12
MATHS
(9pi)/8-9/4"sin"^(-1)1/3=9/4sin^(-1)((2s...

`(9pi)/8-9/4"sin"^(-1)1/3=9/4sin^(-1)((2sqrt(2))/3)`

Text Solution

Verified by Experts

The correct Answer is:
`=9/4sin^(-1)[sqrt(8/9)]`
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise Find the values of each of the following:|8 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise Write the following in the simplest form|4 Videos
  • INTEGRALS

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|21 Videos
  • LINEAR PROGRAMMING

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|5 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)("sin"(pi)/4)

cos^(6)A+sin^(6)A=1-3/4sin^(2)(2A)

cos^(6)A+sin^(6)A=1-3/4sin^(2)(2A)

cos[2"sin"^(-1)3/4+"cos"^(-1)3/4]=

cos[2 sin^(-1) 3/4 + cos^(-1)3/4]

sin((pi)/3-"sin"^(-1)(-1/2)) is equal to

sin ^(-1)[cot ((sin ^(-1) sqrt((2-sqrt(3))/(4)))+cos ^(-1) (sqrt(12))/(4)+sec ^(-1) sqrt(2))]

Evaluate sin^(-1)(sin ((2pi)/3))

Evaluate the following (i) sin ( pi/2 - sin^(-1) ( (-1)/2)) (ii) sin(pi/2 - sin^(-1)(- sqrt3/2))