Home
Class 12
MATHS
tan^(-1)[(3a^(2)x-x^(3))/(a^(3)-3ax^(2))...

`tan^(-1)[(3a^(2)x-x^(3))/(a^(3)-3ax^(2))]`

Text Solution

Verified by Experts

The correct Answer is:
`3"tan"^(-1)x/a`
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise TRY YOUR SELF|3 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    SUBHASH PUBLICATION|Exercise Find the values of each of the following:|8 Videos
  • INTEGRALS

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|21 Videos
  • LINEAR PROGRAMMING

    SUBHASH PUBLICATION|Exercise TRY YOURSELF|5 Videos

Similar Questions

Explore conceptually related problems

If y=(3a^(2)x-x^(3))/(a^(3)-3ax^(2)) then find (dy)/(dx)

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)[(3x=x^(3))/(1-3x^(2))],|x|lt1/(sqrt(3))

Prove that tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))=tan^(-1)((3x-x^(3))/(1-3x^(2)))|x|lt1/(sqrt(3))

d/dx tan^(-1) [(x-x^(1/2))/(1+x^(3/2))] =

lim_(x rarr tan^(-1)) (tan^(2)x - 2tanx -3)/(tan^(2)x - 4tan x +3 ) =

The value of lim_(x rarr 1) (tan^(2)(x-1))/(x^(3)-x^(2)-x+1) =

int_(-1/2)^(1/2) [sin^(-1)(3x-4x^(3)) - cos^(-1) (4x^(3)-3x)] dx =