Home
Class 9
MATHS
The value of x in the equation: (x-b-c)/...

The value of x in the equation: `(x-b-c)/a+(x-c-a)/b+(x-a-b)/c=3`

Text Solution

Verified by Experts

Taking LCM
`(xbc-b^2c-bc^2+xac-ac^2-a^2c+xab-a^2b-ab^2)/(abc)`
`x(bc+ac+ab)=b^2c+bc^2+ac^2+a^2c+a^2b+Ab^2+3abc`
`x(bc+ab+ac)=bc(a+b+c)+ac(a+b+c)+ab(a+b+c)`
`x(ab+bc+ca)=(a+b+c)(bc+ac+ab)`
`x=a+b+c`.
Promotional Banner

Similar Questions

Explore conceptually related problems

(_x^( If )-b-c)/(a)+(x-c-a)/(b)+(x-a-c)/(c)=3

If a, b, c are real, then both the roots of the equation : (x- b) (x-c) + (x-c) (x-a) + (x-a)(x-b) are always :

The value of x which satisfies the equation (x+a^(2)+2c^(2))/(b+c)+(x+b^(2)+2a^(2))/(c+a)+(x+c^2+2b^(2))/(a+b)=0 is

If a, b, c are different, then value of x satisfying the equation |{:( 0 , x^(2) - a , x^(3) - b) , (x^(2) + a , 0 , x^(2) + c), (x^(4) + b , x- c , 0):}|=0 is

If a,b and c are real numbers then the roots of the equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are always

If a, b, c are real, then both the roots of the equation (x -b )(x -c)+(x -c)(x - a)+(x - a)(x - b)=0 are always