Home
Class 11
MATHS
tan^(-1)(1)/(2x+1)+tan^(-1)(1)/(4x+1)=ta...

tan^(-1)(1)/(2x+1)+tan^(-1)(1)/(4x+1)=tan^(-1)(2)/(x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((1)/(1+2x))+tan^(-1)((1)/(1+4x))=tan^(-1)((2)/(x^) (2)))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

If "Tan"^(-1)1/(1+2x)+"Tan"^(-1)1/(4x+1)" = Tan"^(-1)2/(x^(2)) then x(x!=0)=

The root of the equation tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36)) is

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

If: tan^(-1)((x-1)/(x+1))+ tan^(-1)((2x-1)/(2x+1)) = tan^(-1) (23/36) . Then: x=