Home
Class 11
MATHS
y=tan^(-1)((x)/(sqrt(1+x^(2))))...

y=tan^(-1)((x)/(sqrt(1+x^(2))))

Promotional Banner

Similar Questions

Explore conceptually related problems

y=tan^(-1)((x)/(1+sqrt(1-x^(2))))

(iv) If y=tan^(-1)(x/(1+sqrt(1-x^(2))))+sin(2tan^(-1)sqrt((1-x)/(1+x))) , then find (dy)/(dx) for x epsilon(-1,1)

y=tan^(-1)((x)/(1+sqrt(1-x^(2))))+sin(2tan^(-1)theta*sqrt((1-x)/(1+x))) then prove that ,4(1-x^(2))^(3)((d^(2)y)/(dx^(2)))^(2)+4x=x^(2)+4

Simplify y=tan^(-1)(x/(1+sqrt(1-x^2)))

Find (dy)/(dx) of y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))