Home
Class 8
MATHS
" (i) "(3a^(2)+(1)/(3^(2)))^(2)...

" (i) "(3a^(2)+(1)/(3^(2)))^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

(a) (3a^(2)+(1)/(3a^(2)))^(2)

(2)/(3)+(1)/(2)((2)/(3))^(2)+(1)/(3)((2)/(3))^(3)+....=

Evaluate: (i) {((-2)/(3))^(2)} (ii) [{((-1)/(3))^(2)}^(-2)]^(-1) (iii) {((3)/(2))^(-2)}

((3(2)/(3))^(2)-(2(1)/(2))^(2))/((4(3)/(4))^(2)-(3(1)/(3))^(2))-:(3(2)/(3)-2(1)/(2))/(4(3)/(4)-3(1)/(3))=?(37)/(97) (b) (74)/(97)( c) 1(23)/(74) (d) None of these

Simplify ((3(2)/(3))^(2)-(2 (1)/(2)))/((4(3)/(4))^(2)-(3(1)/(3))^(2))+(3(2)/(3)-2(1)/(2))/(4(3)/(4)-3(1)/(3))

Factorise : (6 (2)/(3) )^2 - (2 (1)/(3))^2

If the expression 2(1)/(2) of (3)/(4)xx(1)/(2)-:(3)/(2)+(1)/(2)-:(3)/(2)[(2)/(3)-(1)/(2) of (2)/(3)] is simplified,we get (a) (1)/(2) (b) (7)/(8)(c)1(5)/(8) (d) 2(3)/(5)

((1)/(2) . (2)/(2))/(1^(3))+((2)/(3) . (3)/(2))/(1^(3)+2^(3)) +((3)/(2) . (4)/(2))/(1^(3)+2^(3)+3^(3))+.. . . to n terms

Let H_(n)=1+(1)/(2)+(1)/(3)+ . . . . .+(1)/(n) , then the sum to n terms of the series (1^(2))/(1^(3))+(1^(2))/(1^(3))+(2^(2))/(2^(3))+(1^(2)+2^(2)+3^(2))/(1^(3)+2^(3)+3^(3))+ . . . , is