Home
Class 12
MATHS
[(25)^(+)sin^(-1)a+sin^(-1)b+sin^(-1)c=p...

[(25)^(+)sin^(-1)a+sin^(-1)b+sin^(-1)c=pi" then prove that: "],[qquad a sqrt(1-a^(2))+b sqrt(1-b^(2))+c sqrt(1-c^(2))=2abc]

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)a+sin^(-1)b+sin^(-c)=pi , then the value of asqrt((1-a^(2)))+bsqrt((1-b^(2)))+csqrt((1-c^(2))) will be

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then a sqrt(1-a^(2))+b sqrt(1-b^(2))+c sqrt(1-c^(2)) is equal to a+b+c( b )a^(2)b^(2)c^(2)2abc(d)4abc

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+bsqrt((1-b^2))+csqrt((1-c^2)) will be (A) 2a b c (B) a b c (C) 1/2a b c (D) 1/3a b c

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+bsqrt((1-b^2))+csqrt((1-c^2)) will be (A) 2a b c (B) a b c (C) 1/2a b c (D) 1/3a b c

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+bsqrt((1-b^2))+sqrt((1-c^2)) will be 2a b c (b) a b c (c) 1/2a b c (d) 1/3a b c

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+bsqrt((1-b^2))+sqrt((1-c^2)) will be 2a b c (b) a b c (c) 1/2a b c (d) 1/3a b c

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of ^( value of )+b sqrt((1-b^(2)))+sqrt((1-c^(2))) will be (A) 2abc(B)abc(C)(1)/(2)abc(D)(1)/(3)abc

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then asqrt(1-a^2)+bsqrt(1-b^2)+csqrt(1-c^2) is equal to (a) a+b+c (b) a^2b^2c^2 (c) 2a b c (d) 4a b c

sin ^ (- 1) a-cos ^ (- 1) b = sin ^ (- 1) (ab-sqrt (1-a ^ (2)) sqrt (1-b ^ (2)))