Home
Class 9
MATHS
(x-y-z)^2-(x^2+y^2+z^2)=2(yz-zx-xy)...

`(x-y-z)^2-(x^2+y^2+z^2)=2(yz-zx-xy)`

Text Solution

Verified by Experts

`L.H.S. = (x-y-z)^2-(x^2+y^2+z^2)`
`=(x^2+y^2+z^2-2xy-2zx+2yz) - (x^2+y^2+z^2)`
`=2yz-2zx-2xy`
`=2(yz-zx-xy) = R.H.S.`
Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise : |{:(x,y,z),(x^2,y^2,z^2),(yz,zx,xy):}|

Simplify- (x-y-z)(x^2+y^2+z^2+xy-yz+zx)

Find the following expressions (x-2y-z)(x^2+4y^2+z^2+2xy-2yz+zx)

Prove that |{:(x,y,z),(x^2,y^2,z^2),(yz,zx,xy):}|=|{:(1,1,1),(x^2,y^2,z^2),(x^3,y^3,z^3):}|=(x-y) (y-z) (z-x) (xy+yz+zx)

Find the product. (x+y-z)(x^2+y^2+z^2-xy+yz+zx)

If ax+cy+bz=X, cx+by+az=Y, bx+ay+cz=Z, show that (a^(2)+b^(2)+c^(2)-bc-ca-ab)(x^(2)+y^(2)+z^(2)-yz-zx-xy)=X^(2)+Y^(2)+Z^(2)-YZ-ZX-XY

Find the product: (x+y+2z)(x^(2)+y^(2)+4z^(2)-xy-2yz-2zx)

Simplify: (x+y+2z)(x^(2)+y^(2)+4z^(2)-xy-2yz-2zx)

Prove that |[yz-x^2,zx-y^2,xy-z^2],[zx-y^2,xy-z^2,yz-x^2],[xy-z^2,yz-x^2,zx-y^2]| is divisible by (x+y+z), and hence find the quotient.

Show that: |[x, y ,z],[x^2, y^2, z^2], [yz, zx, xy ]|=(x-y)(y-z)(z-x).(xy+yz+zx)