Home
Class 12
MATHS
If A=[[0,-x],[x,0]],B=[[0,1],[1,0]] and ...

If `A=[[0,-x],[x,0]],B=[[0,1],[1,0]]` and `x^2=-1`, then show that `(A+B)^2=A^2+B^2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[0,-xx,0]],B=[[0,11,0]] and x^(2)=-1, then show that (A+B)^(2)=A^(2)+B^(2)

If A=[{:(0,-x),(x,0):}],B=[{:(0,1),(1,0):}]andx^(2)=-1 then show that (A+B)^(2)=A^(2)+B^(2) .

If A=[[1,0],[0,1]],B=[[1,0],[0,-1]] and C=[[0,1],[1,0]] then show that A^(2)=B^(2)=C^(2)

Answer the following questions.If A=[[0,1],[1,0]],B=[[0,-1],[1,0]] ,show that (A+B).(A-B)!=A^2-B^2

If A=[{:(0,1),(1,1):}]andB=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2) .

If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2)

If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2)

If A[(-1,0),(0,1)] and B=[(0,1),(1,0)] , show that (A+B)^2 ne A^2+2AB+B^2 .

If A=[{:(0,1),(1,1):}]andB=[{:(0,-1),(1,0):}] show that (A+B)*(A-B)neA^(2)-B^(2) .

If [[x,1]][[1,0],[2,0]]=0 ,then x equals (A) 0 (B) -2 (C) -1 (D) 2