Home
Class 11
MATHS
(log(2)24)/(log(96)2)-(log(2)192)/(log(1...

(log_(2)24)/(log_(96)2)-(log_(2)192)/(log_(12)2)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that N=7^(log_(49),900),A=2^(log_(2)4)+3^(log_(2)4)-4^(log_(2)2),D=(log_(5)49)(log_(7)125) Then answer the following questions : (Using the values of N, A, D) If log_(A)D=a, then the value of log_(6)12 is (in terms of a)

Prove that : (log_(2)10)(log_(2)80)-(log_(2)5)(log_(2)160)=4 .

Find the value of (log_(3)12)(log_(3)72)-log_(3)(192)*log_(36)

y=sqrt(log_(23)log_(2)(12)log_(2)(48)log_(2)(192)+16)-log_(2)(12)log_(2)(48)+10 find y in N

(log_(2)10)*(log_(2)80)-(log_(2)5)*(log_(2)160) is equal to:

(log_(2)10).(log_(2)80)-(log_(2)5)*(log_(2)160) is equal to:

(log_(2)10).(log_(2)80)-(log_(2)5)*(log_(2)160) is equal to:

log_(2)(log_(2)(log_(3)x))=log_(2)(log_(2)(log_(2)y))=0 find (x+y)=?

If log_(2)(log_(2)(log_(3)x))=log_(2)(log_(3)(log_(2)y))=0 then the value of (x+y) is

((log_(100)10)(log_(2)(log_(4)2))(log_(4)log_(2)^(2)(256)^(2)))/(log_(4)8+log_(8)4)=