Home
Class 9
MATHS
(m(1))(p^(2)+q^(2))+4y(p^(2)+q^(2))...

(m_(1))(p^(2)+q^(2))+4y(p^(2)+q^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If AM and GM of x and y are in the ratio p: q, then x: y is : a) p - sqrt(p^(2)+ q^(2)) : p +sqrt (p^(2)+ q^(2)) b) p +sqrt(p^(2) - q^ (2) ) : p- sqrt(p^(2)-q^(2)) c) p : q d) p + sqrt(p^(2) + q^(2)) : p-sqrt(p^(2) + q^(2))

2x(p^2+q^2)+4y(p^2+q^2)

Sum the following infinite series (p-q) (p+q) + (1)/(2!) (p-q)(p+q) (p^(2) + q^(2))+(1)/(3!) (p-q) (p+q) (p^(4)+q^(4)+p^(2) q^(2)) + ...oo

Sum the following infinite series (p-q) (p+q) + (1)/(2!) (p-q)(p+q) (p^(2) + q^(2))+(1)/(3!) (p-q) (p+q) (p^(4)+q^(4)+p^(2) q^(2)) + ...oo

If the lines p_(1)x+q_(1)y=1+q_(2)y=1 and p_(3)x+q_(3)y=1 be concurrent,show that the point (p_(1),q_(1)),(p_(2),q_(2)) and (p_(3),q_(3)) are collinear.

If z=x-i y and z^(1 / 3)=p+i q then ((x)/(p)+(y)/(q)) div(p^(2)+q^(2))=

If the difference of the roots of x^(2)-px+q=0 is unity,then p^(2)+4q=1b .p^(2)-4q=1c*p^(2)+4q^(2)=(1+2q)^(2)d4p^(2)+q^(2)=(1+2p)^(2)