Home
Class 12
MATHS
f(x)=log[(1+x)/(1-x)],t h e n p r o v e ...

`f(x)=log[(1+x)/(1-x)],t h e n p r o v e t h a tf[(2x)/(1+x^2)]=2f(x)` 3 11 Fese thonygovernor / -27)

Promotional Banner

Similar Questions

Explore conceptually related problems

Iff(x)=int_1^x(logt)/(1+t+t^2)dxAAxlt=1,t h e np rov et h a tf(x)=f(1/x)dot

Iff(x)=int_1^x(logt)/(1+t+t^2)dxAAxlt=1,t h e np rov et h a tf(x)f(1/x)dot

If f(x+2a)=f(x-2a),t h e np rov et h a tf(x)i sp e r iod i cdot

If f(x+2a)=f(x-2a),t h e np rov et h a tf(x)i sp e r iod i cdot

If f(x+2a)=f(x-2a),t h e np rov et h a tf(x)i sp e r iod i cdot

'f(x)=(7^(^^)(1+ln x))/(x^(^^)(ln7))t h e n

If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)}^2 (b) {f(x)}^3 (c) 2 f(x) (d) 3f(x)

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))