Home
Class 14
MATHS
8(a+b)^(3)+27(b+c)^(3)7...

8(a+b)^(3)+27(b+c)^(3)7

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b and c be the roots of 3 x^(3)+8 x+7=0 , then the value of (a+b)^(3)+(b+c)^(3)+(c+a)^(3) is equal to

Factorise : 8a^(3) - 27b^(3)

If a - 2b + 3c= 0 , state the value of a^(3) -8b^(3) + 27c^(3)

Factorise : (i) 9a^(3)-27b^(3) " " (ii) a^(3)-343 " " (iii) a^(3)-(27)/(a^(3)) " " (iv) 1+8a^(3) " " (v) (a+b)^(3)-(a-b)^(3) .

If a+b+c=27 then (a-7)^(3)+(b-9)^(3)+(c-11)^(3)-3(a-7)(b-9)(c-11)=

Factorise : (8a^(3))/(27) - (b^(3))/(8)