Home
Class 12
MATHS
If y=x/(sqrt(a^2-1))-2/(sqrt(a^2-1))tan^...

If `y=x/(sqrt(a^2-1))-2/(sqrt(a^2-1))tan^(- 1)((sinx)/(a+sqrt(a^2-1)+cosx))`where a`in(-oo,-1)uu(1,oo)` then `y'(pi/2)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

y=sin^(-1)((sinx+cosx)/sqrt2)=?

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

int((1)/(sqrt(x))+(2)/(sqrt(x^(2)-1))-(3)/(2x^(2)))dx on (1,oo)

If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] , where 0lt xlt(pi)/(2), then (dy)/(dx) is equal to

If 2y=(cot^(-1) ((sqrt3cosx+sinx)/(cosx-sqrt3sinx)))^2, x in (0,pi/2) then y' is equal to

y=tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))), where -1

y= tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) , where -1 < x < 1 , find dy/dx

y= tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) , where -1 < x < 1 , find dy/dx

int(2sinx)/((3+sin2x)dxi se q u a lto 1/2ln|(2+sinx-cosx)/(2-sinx+cosx)|-1/(sqrt(2))tan^(-1)((sinx+cosx)/(sqrt(2)))+c 1/2ln|(2+sinx-cosx)/(2-sinx+cosx)|-1/(2sqrt(2))tan^(-1)((sinx+c0sx)/(sqrt(2)))+c 1/4ln|(2+sinx-cosx)/(2-sinx+cosx)|-1/(sqrt(2))tan^(-1)((sinx+c0sx)/(sqrt(2)))+c non eoft h e s e

If y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin x))/(sqrt(1+sin x)+sqrt(1-sin x)]] where 0 lt x lt pi/2 find (dy)/(dx)