Home
Class 12
MATHS
Let f be a real-valued function satisfyi...

Let `f` be a real-valued function satisfying `f(x)+f(x+4)=f(x+2)+f(x+6)` Prove that `int_x^(x+8)f(t)dt` is constant function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a real valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6) Prove that int_(x)^(x+8)f(t)dt is a constant function.

Let f be a real valued function satisfying f(x)+f(x+6)=f(x+3)+f(x+9).Then int_x^(x+12)f(t)dt is

Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6).

Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6).

Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6).

Find the period of the real valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6)

Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6).

f(x) is a real valued function, satisfying f(x+y)+f(x-y)=2f(x).f(y) for all yinR , Then

Let f be a real-valued function such that f(x)+2f((2002)/(x))=3x. Then find f(x)