Home
Class 12
MATHS
" If "y=(sin x)^(sin x^(sin x)cdots0)," ...

" If "y=(sin x)^(sin x^(sin x)cdots0)," then prove that "(dy)/(dx)=(y^(2)cot x)/(1-log sin x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Ify=(sin x)^(sin x)sim((sin x)...oo), Then prove that (dy)/(dx)=(y^(2)cot x)/(1-y log sin x)

If y=(sin x)^(sin x)sim((sin x)dot oo)), prove that (dy)/(dx)=(y^(2)cot x)/((1-y log sin x))

If y=(sin x) ^(sin x ^sin x ....oo) then prove that dy/dx=(y^2 cot x)/(1-y log (sin x))

If y=(sin x) ^(sin x ^sin x ....oo) then prove that dy/dx=(y^2 cot x)/(1-y log (sin x))

If y=(sin x)^((sin x))srove that (dy)/(dx)=(y^(2)cos x)/((1-y log sin x))

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If (sin x)^(y)=x+y, prove that (dy)/(dx)=(1-(x+y)y cot x)/((x+y)log sin x-1)

If (sin x)^(y)=x+y, prove that(dy)/(dx)=(1-(x+y)y cot x)/((x+y)log sin x-1)