Home
Class 12
MATHS
Let f(x)=tanxa n dg(f(x))=f(x-pi/4), wh...

Let `f(x)=tanxa n dg(f(x))=f(x-pi/4),` where `f(x)a n dg(x)` are real valued functions. Prove that `f(g(x))="tan` `((x+1)/(x+1))dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=tanx a n d g(f(x))=f(x-pi/4), where f(x)a n dg(x) are real valued functions. Prove that f(g(x))="tan ((x-1)/(x+1))dot

Let f(x)=tan xandg(f(x))=f(x-(pi)/(4)) where f(x)andg(x) are real valued functions. Prove that f(g(x))=tan((x+1)/(x+1))

Find the value of x for which function are identical. f(x)=xa n dg(x)=1/(1//x)

If f(x)=|x-2|a n dg(x)=f[f(x)],t h e ng^(prime)(x)= ______ for x>2

If f(x)=|x-2|a n dg(x)=f[f(x)],t h e ng^(prime)(x)= ______ for x>20

Let f(x)a n dg(x) be two continuous functions defined from RvecR , such that f(x_1)>f(x_2)a n dg(x_1) f(g(3alpha-4))

Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-(x))dot Show that g(x)ge0AAx in Rdot

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)