Home
Class 11
MATHS
" is "Le(x^(4)-sqrt(x))/(sqrt(x)-1)...

" is "Le(x^(4)-sqrt(x))/(sqrt(x)-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)

Write the simplest form : tan^(-1)( (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x) + sqrt(1-x))); (-1)/sqrt(2) le x le 1

Solve : (sqrt(4x+1)+sqrt(x+3))/(sqrt(4x+1)-sqrt(x+3))=(4)/(1)

Solve the following equation: (sqrt(4x+1)+sqrt(x+3))/(sqrt(4x+1)-sqrt(x+3))=4/1

prove tan ^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2 cos ^(-1) x, -1/2 le x le 1

tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),absxx le 1/sqrt2 , is equal to

If y=tan^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))), x^2 le 1 , then find (dy)/(dx)

Evaluate : int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx[0 le x le 1]