Home
Class 11
MATHS
" examples "[" "e N."],[(1)/(3*5)+(1)/(5...

" examples "[" "e N."],[(1)/(3*5)+(1)/(5*7)+(1)/(7*9)+...+(1)/((2n+1)(2n+3))=(n)/(3(2n+3))]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that by using the principle of mathematical induction for all n in N : (1)/(3.5)+ (1)/(5.7)+ (1)/(7.9)+ ....+(1)/((2n+1)(2n+3))= (n)/(3(2n+3))

Prove that by using the principle of mathematical induction for all n in N : (1)/(3.5)+ (1)/(5.7)+ (1)/(7.9)+ ....+(1)/((2n+1)(2n+3))= (n)/(3(2n+3))

Prove that by using the principle of mathematical induction for all n in N : (1)/(3.5)+ (1)/(5.7)+ (1)/(7.9)+ ....+(1)/((2n+1)(2n+3))= (n)/(3(2n+3))

Prove the following by using the principle of mathematical induction for all n in Nvdots(1)/(3.5)+(1)/(5.7)+(1)/(7.9)+...+(1)/((2n+1)(2n+3))=(n)/(3(2n+3))

Prove the following by using the principle of mathematical induction for all n in N (1)/(3.5) + (1)/(5.7) + (1)/(7.9)+……+(1)/((2n+1)(2n+3)) = (n)/(3(2n+3))

Prove the following by the principle of mathematical induction: (1)/(3.5)+(1)/(5.7)+(1)/(7.9)+(1)/((2n+1)(2n+3))=(n)/(3(2n+3))

Lt_(x to oo)((1)/(3.5)+(1)/(5.7)+.....+(1)/((2n+1)(2n+3)))=

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

By the principle of mathematical induction prove that the following statements are true for all natural numbers 'n' (a) (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+......+(1)/((2n-1)(2n+1)) =(n)/(2n+1) (b) (1)/(1.4)+(1)/(4.7)+(1)/(7.10)+......+(1)/((3n-2)(3n+1)) =(n)/(3n+1)