Home
Class 12
MATHS
f(x)={(log(1+2a x)-log(1-b x))/x , x!=0x...

`f(x)={(log(1+2a x)-log(1-b x))/x , x!=0x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

if the function f(x) defined by f(x)= (log(1+a x)-"log"(1-b x))/x , if x!=0 and k if x=0 is continuous at x=0 , find k.

If the function f(x) defined by f(x)={(log(1+a x)-log(1-b x))/x ,\ \ \ if\ x!=0\ \ \ \ \ \ \ \ \ \ \ \ k ,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ x=0 is continuous at x=0 , find k .

If the function f(x) defined by f(x)={(log(1+a x)-log(1-b x))/x ,\ \ \ if\ x!=0\ \ \ \ \ \ \ \ \ \ \ \ k ,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ x=0 is continuous at x=0 , find k .

if the function f(x) defined by f(x)=(log(1+ax)-log(1-bx))/(x), if x!=0 and k if x=0 is continuous at x=0, find k

If f(x) {:(=(log (1-2x)-log(1-3x))/x", " x != 0 ),(=a", " x = 0 ):} is continuous at x = 0 , then : a =

Let f(x)=(log(1+x/a)-log(1-x/b))/x ,\ \ x!=0 . Find the value of f at x=0 so that f becomes continuous at x=0 .

Let f(x)=(log(1+x/a)-log(1-x/b))/x ,\ \ x!=0 . Find the value of f at x=0 so that f becomes continuous at x=0 .

If the f(x) =(log(1+ax)-log(1-bx))/x , xne0 is continuous at x = 0 then, f(0) = .....

If the function f(x) defined by f(x)= (log(1+3x)-"log"(1-2x))/x , x!=0 and k , x=0. Find k.

Let f(x)={{:((log(1+ax)-log(1-bx))/x, x ne 0), (k,x=0):} . Find 'k' so that f(x) is continuous at x = 0.