Home
Class 12
MATHS
[" Task "#166],[" Let "s(n)=sum(k=1)^(n)...

[" Task "#166],[" Let "s_(n)=sum_(k=1)^(n)a_(k)" and "lim_(n rarr oo)a_(n)=a," the "],[n_(n rarr oo)(s_(n+1)-s_(n))/(sqrt(Sigma_(k=1)^(n)k^(3)))" is equal to "],[0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If S_(n),=sum_(k=1)^(n)a_(k) and lim_(n rarr oo)a_(n)=a, then lim_(n rarr oo),(S_(n+1)-S_(n))/(sqrt(sum_(k=1)^(n)k)) is equal to

If S_n=sum_(k=1)^n a_k and lim_(n->oo)a_n=a , then lim_(n->oo)(S_(n+1)-S_n)/sqrt(sum_(k=1)^n k) is equal to

Let be a sequence such that lim_(x rarr oo)a_(n)=0. Then lim_(n rarr oo)(a_(1)+a_(2)++a_(n))/(sqrt(sum_(k=1)^(n)k)), is

Let u_(n)=sum_(k=1)^(n)(k) and v_(n)=sum_(k=1)^(n)(k-0.5) . Then lim_(n rarr oo)(sqrt(u_(n))-sqrt(v_(n))) equals

lim_ (n rarr oo) sum_ (k = 1) ^ (n) (k) / (n ^ (2) + k ^ (2)) is equals to

Solve lim_(n rarr oo)a_(n), when a_(n+1)=sqrt(2+a_(n)),n=1,2,3dots

For n in N, let a_(n)=sum_(k=1)^(n)2k and b_(n)=sum_(k=1)^(n)(2k-1)* then lim_(n rarr oo)(sqrt(a)_(n)-sqrt(b_(n))) is equal to

Let a_(n)=sum_(k=1)^(n)tan^(-1)((1)/(k^(2)+k+1));n>=1 ,then lim_(n rarr oo)n^(2)(e^(a_(n)+1)-e^(a_(n)))=

Let a_(n)=sum_(k=1)^(n)(1)/(k(n+1-k)), then for n>=2