Home
Class 9
MATHS
lim(x->oo)x/(sqrt(x^2+1))...

`lim_(x->oo)x/(sqrt(x^2+1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo) (x-sqrt(x^2+x))

lim_(x->oo) (x-sqrt(x^2+x))

If lim_(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are given by:

The value of lim_(x->oo)(x/(x+(sqrt(x))/(x+(sqrt(x))/(x+(sqrt(x))/(x+(sqrt(x))/(x+......oo)))))) is

lim_(x->oo) {sqrt(x^4-x^2+1)-ax^2-a}=A finite value. Then a is equal to-

lim_(x->oo)x^(3/2)(sqrt(x^3+1)-sqrt(x^3-1))

Evaluate the following limit: (lim)_(x->+-oo)(sqrt(x^2-2x-1)-sqrt(x^2-7x-3))

If (lim)_(x->oo)(sqrt((x^4-x^2+1))-a x^2-b)=0 , then there exists at least one a\ a n d\ b for which point (a,-2b) lies on the line.

lim_(x rarr+oo)x(sqrt(x^(2)+1)-x)

Prove that: lim_(x rarr oo)x(sqrt(x^(2)+1)-sqrt(x^2-1))) = 1