Home
Class 12
MATHS
Let f :[1/2,oo)rarr[3/4,oo), where f(x)=...

Let `f :[1/2,oo)rarr[3/4,oo),` where `f(x)=x^2-x+1.` Find the inverse of f(x). Hence or otherwise solve the equation, `x^2-x+1=1/2+sqrt(x-3/4.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:[1//2, infty)rarr[3//4, infty) where f(x)= x^2-x+1 . Find the inverse of f(x). Hence or otherwise solve the equation, x^2-x+1=1/2+sqrt(x-3//4)

If f :[2,oo)rarr(-oo,4], where f(x)=x(4-x) then find f^-1(x)

If f:[2,oo)rarr(-oo,4], where f(x)=x(4-x) then find f^(-1)(x)

Let f:[2, oo) rarr X be defined by f(x) = 4x-x^2 . Then, f is invertible if X =

A function f: [3/2, oo) to [ 7/4, oo) defined as, f(x) = x^2 - 3x +4. Then compute f^(-1)(x) and find the solution of the equation, f(x) = f^(-1) (x) .

If f:[1, oo) rarr [2, oo) is defined by f(x)=x+1/x , find f^(-1)(x)

If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

If f: [1, oo) rarr [5, oo) is given by f(x) = 3x + (2)/(x) , then f^(-1) (x) =

If f : [0, oo) rarr [0, oo) and f(x) = (x^(2))/(1+x^(4)) , then f is

If f : [0, oo) rarr [0, oo) and f(x) = (x^(2))/(1+x^(4)) , then f is